Third Semester B.Tech. Degree Examination, April 2015 (2013 Scheme)

13.301 : ENGINEERING MATHEMATICS - II (ABCEFHMNPRSTU)

Time: 3 Hours

Max. Marks: 100

Instructions: 1) Answer all questions from Part A. Each question carries 4 marks.

2) Answer one full question from each Module of Part B. Each full question carries 20 marks.

PART-A

- 1. Find the angle between the normals to the surface $xy = z^2$ at the points (-2, -2.2)and (1, 9, -3).
- 2. Find the workdone by the force $\vec{F} = x\hat{i} + 2y\hat{j}$ in moving a particle from (0, 0) to (2, 2) along the curve $2y = x^2$.
- 3. Find the Fourier cosine transform of e^{-5x}.
- 4. Form the partial differential equation by eliminating the arbitrary functions from

 $z = f(y + 3x) + g(y - 3x) + \frac{x^3y}{x^3}$.

5. Solve the equation $U(x, t) = e^{-t} \cos x$ with U(x, 0) = 0 and $\frac{\partial u}{\partial t}(0, t) = 0$ by the contraction $U(x, t) = e^{-t} \cos x$ with U(x, 0) = 0 and $\frac{\partial u}{\partial t}(0, t) = 0$ method of separation of variables.

PART-B

Module - I

- 6. a) Show that $\vec{F} = (z^2 + 2x + 3y)\hat{i} + (3x + 2y + z)\hat{j} + (y + 2xz)\hat{k}$ is irrotational but not solenoidal.
 - b) If $\bar{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\bar{r}|$ show that $\nabla^2 r^n = n(n+1) r^{n-2}$.
 - c) Use Divergence theorem to evaluate $\iint F \cdot \hat{n} ds$ where $F = 4xz\hat{i} v^2\hat{j} + vz\hat{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 7. a) Find the constants a, b, c so that $\vec{F} = (axy + bz^3)\hat{i} + (3x^2 cz)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational.
 - b) If $\overline{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$. Find $\int \overline{F} \cdot d\overline{r}$ where C is the rectangle in the xy plane bounded by x = 0, x = a, y = 0, y = b.
 - c) Use Green's theorem in the plane to evaluate $\int_{0}^{\infty} (x^2 2xy) dx + (x^2y + 3) dy$ where C is the boundary of the region bounded by $y = x^2$ and y = x.

Module - II

8. a) Find the Fourier series of period 21 for the function

$$f(x) = l - x, 0 \le x \le l$$
$$= 0. \quad l \le X \le 2 \quad l$$

- b) Expand $f(x) = \pi x x^2$ as a half range sine series in the range $(0, \pi)$.
- c) Find the Fourier transform of f(x) = x, |x| < a

$$= 0, |x| > a, a > 0.$$

- 9. a) Find the Fourier series of $f(x) = x 2x^2$, $-\pi < x < \pi$.
 - b) Expand $f(x) = x + \pi$, $0 \le x \le \pi$

 $= -\,x\,+\pi\,\,-\pi \leq x \leq 0$, given that f(x) is periodic with period $\,2\pi\,.$

c) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$

Module - III

- 10. a) Solve $\frac{\partial^2 z}{\partial x^2} + a^2 z = 0$, given that when x = 0, $z = e^y$ and $\frac{\partial z}{\partial x} = a$.
 - b) Find the singular integral of $z = px + qy + p^2 q^2$.
 - c) Solve: $x(y^2 + z) p y(x^2 + z) q = z(x^2 y^2)$.
- 11. a) Solve the equation $(D^4 D'^4) z = e^{x+y}$.
 - b) Solve: $z = xp^2 + qy$.
 - c) Solve: yp = 2xy + log q.

Module - IV

- 12. a) Find the variable separable solution of the heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$.
 - b) If a string of length 'l' is initially at rest in the equilibrium position and each of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = V_0 \cdot \sin^3 \frac{\pi x}{l}$, 0 < x < l. Find the displacement y(r, t).
- 13. a) A tightly stretched string of length 'l' is fastened at both ends. Motion is started by displacing the string into the form kx (l-x) from which it is released at time t = 0. Find the displacement y (x, t).
 - b) A rod of length 'l' has its ends A and B kept at 0°C and 80°C respectively until slate-state conditions prevail. If B is suddenly reduced to 0°C and kept so, while that of A is maintained, find the temperature function u(x, t).